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1. Introduction

In order to predict quenching processes of ferrous ma-

terials or mechanical characteristics of superconductor

magnets at quench, better understanding of the mechan-

ism of ®lm boiling heat transfer and establishment of its

theoretical model are necessary. In general, ®lm boiling

heat transfer is signi®cantly in¯uenced by shapes and

orientation of heating surfaces, but, in the case of a hori-

zontal surface facing downward, the heat transfer coe�-

cient becomes the worst. It is, therefore, important to

thoroughly clarify the heat transfer characteristics of

®lm boiling heat transfer from a horizontal surface

facing downward. So far, a number of experimental stu-

dies [1±3,5,6] have been made on this subject, the

reported experimental data di�er greatly among the

researchers. Recently, Nishio et al. [5] indicated that the

heat transfer coe�cient is enhanced remarkably by dis-

turbances caused by departure bubbles at the outer edge

of a heating surface and obtained experimental data of

the heat transfer coe�cient for pool ®lm boiling with the

smooth liquid±vapor interface. Tokita and Djati [6]

showed that the heat transfer characteristics change sys-

tematically with the height of a heating surface extruded

from a circumferential, insulated surface and that there

exists a height where the heat transfer coe�cient

becomes the smallest. They found that this height was 1

mm and the most stable ®lm boiling was realized in this

case. On the other hand, a few theoretical studies of pool

®lm boiling heat transfer have also been performed

mainly using boundary-layer integral methods. Barron-

Dergham [3] and Nishio et al. [5] developed one-

equation boundary-layer integral method, where only

the vapor ®lm thickness d is treated as unknown, while

Shigechi et al. [4] proposed two-equation boundary layer

integral method and derived the governing equations for

the vapor ®lm thickness d and representative radial vel-

ocity ux: These authors assumed linear or quadratic

equations to describe the dimensionless temperature

pro®le of the vapor ®lm, i.e., y�Z� � 1ÿ Z and �1ÿ Z�2,
which, however, violate the energy balance at the

vapor±liquid interface and result in an improper depen-

dence of Nusselt number on the superheat.

The purpose of the present note is to improve exist-

ing one-equation boundary-layer integral method for

®lm boiling heat transfer from a downward-facing sur-

face. To this end, ®rst, the dimensionless temperature

pro®le of a vapor ®lm is determined in order to simul-

taneously satisfy the energy balance at the liquid±

vapor interface and the energy equation. With the

dimensionless temperature pro®le thus determined, the

governing equation for the dimensionless vapor ®lm

thickness d is derived and solved numerically. Then, an

analytical formula for the heat transfer characteristics

is established based on the numerical results for d:
Finally, the validity of the obtained heat transfer cor-

relation is addressed in comparison with available ex-

perimental data.
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2. Theoretical analysis

In order to perform the analysis, we assume that: (1)
a stable vapor ®lm is formed on the lower surface of a

horizontal circular plate of diameter D and of uniform
temperature Tw; (2) the liquid±vapor interface is
smooth and the e�ect of surface tension can be disre-

garded; (3) the boundary-layer approximation is valid;
(4) the ¯ow ®eld of vapor is viscous; (5) the tempera-
ture at the liquid±vapor interface is equal to the satur-

ation temperature TS; (6) the radial velocity of vapor
at the liquid±vapor interface is zero; (7) the physical
properties of vapor are constant, and they are esti-
mated at the ®lm temperature; and (8) the contribution

of radiation heat transfer is negligible.
Under the foregoing assumptions, the conservation

laws of mass, momentum and energy are mathemat-

ically described as follows:
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The boundary conditions for these equations are

y � 0: u � w � 0, T � TW �6�

y � d: u � 0, �7�

PV � PL, �8�

Nomenclature

an expansion coe�cient
C0 coe�cient
CP speci®c heat at constant pressure

D diameter of a heating surface
Gr Grashof number �� g�rL=rV ÿ 1�D3=n2V�
g gravitational acceleration
�h mean convective heat transfer coe�cient
K dimensionless quantity de®ned by �1�

SP=2�=SP

K� quantity de®ned by 1=�3� 2a1�
kV thermal conductivity of vapor
l latent heat of evaporation
N maximum order of a power series

Nu mean convective Nusselt number ��
�hD=kV�

P pressure

PrV Prandtl number of vapor �� CPVmV=kV�
�q mean convective heat ¯ux
qR radiative heat ¯ux

S radius at the outer edge of a vapor ®lm
SP dimensionless superheat �� CPVDTsat=`�
T temperature

Tw temperature of a heating surface
Tsat saturation temperature
DTsat the degree of superheat �� Tw ÿ Ts�
u velocity component in the radial direction

ux representative radial velocity
w velocity component in the vertical direc-

tion
wS vertical velocity component of vapor at

the liquid±vapor interface

X ®lm-boiling Rayleigh number ��
Gr PrVK �

x radial coordinate

y coordinate normal to a heating surface
a absorptivity
b2, b3 constants

g3, g4 constants
d thickness of a vapor ®lm
d0 thickness of a vapor ®lm at the center of a

heating surface

Z dimensionless vertical coordinate �� y=d�
e emissivity
y dimensionless temperature �� �Tÿ

Ts�=DTsat�
mV viscosity of vapor
nV kinematic viscosity of vapor

f dimensionless thickness of vapor ®lm ��
�d=D�4�Gr PrVK

�=3SP�4=5�
r density

c dimensionless radial velocity

Subscripts
L liquid

V vapor
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T � TS, �9�
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We assumed S � 1:01�D=2� in accord with Nishio et

al. [5].
The radial pressure gradient of vapor [3±5] in Eq.

(3) may be written as

@PV
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dd
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Substituting Eq. (13) into Eq. (3) and solving it ana-

lytically yield the following results:

u � uxc�Z� �14�
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�
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and

c�Z� � Zÿ Z2: �16�

Next, we rewrite the governing equations in boundary-
layer integral forms.

Substituting Eq. (2) into Eq. (10) results in
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Integrating Eq. (5) with respect to y, we can obtain
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Here, we assume that the temperature distribution can
be represented as

T � TS � DTsaty�Z�: �19�

Introducing Eqs. (14) and (19) into Eqs. (17) and (18),
we can obtain the following di�erential equations with
respect to the vapor thickness d:

b2
d

dx
�xdux � � kVDTsatg4

rVl

x

d
� 0, �20�

rVCPVb3
d

dx
�xdux � ÿ kV�g4 ÿ g3 �

x

d
� 0, �21�

where b2, b3 g3 and g4 are de®ned as
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Eliminating d
dx �xdux� from Eqs. (20) and (21) results in

SP
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b2
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where SP denotes the dimensionless superheat de®ned
by CPVDTsat=l: In addition to the boundary conditions
(6) and (9), i.e., y�0� � 1 and y�1� � 0, y�Z� must satisfy

Eq. (23). Moreover, since the energy equation (5) may
be rewritten in form of w � � kV

rVCPV

@ 2T
@ y2 ÿ u @T@x �=@T@ y and

the velocity components u and w must be zero at
y � 0, the following relation should hold:
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When y is expanded into a power series of Z, i.e.,
y �PN

n�0 anZ
n, Eq. (24) postulates that a1 6� 0 and

a2 � 0: Although a value of N in the series expansion
of y should be equal to or greater than 3, there exist

only four constraints on y�Z� and thus N must be 3:

y�Z� � a0 � a1Z� a3Z3 �25�

Substituting the boundary conditions (6) and (9) into

Eq. (25), we have

a0 � 1 and a3 � ÿ�1� a1 �: �26�

Using Eq. (23) together with Eqs. (22) and (26), we
can determine a1 as follows:

a1 � ÿ5
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This indicates that y�Z� involves the dimensionless
superheat SP as a parameter. Note that, for

SP41 �DTsat41�, a1 reduces to ÿ1.5. Under the
condition of Eq. (23), Eqs. (20) and (21) are equival-
ent, meaning that only either of them should be solved.

In the present study, we adopted Eq. (20) as the gov-
erning equation for d: Using Eq. (15), we can rewrite
Eq. (20) as follows:
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The boundary conditions for Eq. (28) are

x � 0: d � d0,
dd
dx
� 0, �29�

x � S: d � 0,
dd
dx
� ÿ1: �30�

To rewrite Eqs. (28)±(30) into dimensionless forms, the
following quantities are introduced:

Gr � g
ÿ
rL=rV ÿ 1

�
D3=n2V, K � � 1=�3� 2a1 �,

PrV � CPVmV=kV, Z � r=�D=2�

f � �d=D�4ÿGr PrVK
�=3SP

�4=5
,

f0 � �d0=D�4
ÿ
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Introducing these quantities into Eq. (28) yields

d

dZ

�
Z

df
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�
� 4Z

f1=4
� 0: �32�

The boundary conditions are also rewritten as

Z � 0: f � f0,
df
dZ
� 0, �33�

Z � 1:01: f � 0,
df
dZ
� ÿ1: �34�

Eq. (32) was solved numerically using a fourth-order

Runge±Kutta method. The procedure is as follows:
since f0 is not known beforehand, we proceed the
computation using an arbitrary value of f0 and then

®nd a correct value of f0, for which Eq. (34) is fully
satis®ed. In the computation, the dimensionless radius
was equally divided into 100 increments. To check the

accuracy, the numerical result for f0 was compared
with a more accurate result, which was obtained by
using 200 equally spaced divisions. The comparison
showed that both results agreed up to four signi®cant

digits and, in consequence, a value of f0 is 1.0899.
Once f or d are obtained, we can readily evaluate the
mean heat ¯ux �q, heat transfer coe�cient �h and Nus-

selt number Nu from the following relations:
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�D=2
0
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@y
j0
�
x dx=

ÿ
pD2=4
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Fig. 1. Correlation between experimental values of Nu=X 0:2 and theoretical ones computed from Eqs. (37) and (39).
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Here, C0 is de®ned as
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Since a value of the integral de®ned by
� 1
0

Z
f1=4 dZ was

found to be 0.6200, Eq. (38) reduces to

C0 � 0:9954� ÿ a1 �
��

1� SP

2

�
�3� 2a1 �

�ÿ1=5
: �39�

When SP40, C0 is asymptotic to 0.9954: this is very

close to the theoretical result obtained by Nishio et al.
[5], who assumed a linear temperature pro®le of vapor
®lm and derived C0 � 1:02 utilizing a variational
method.

3. Results and discussion

Correlation between experimental values of C0 ��
Nu=X 0:2� and theoretical ones estimated from Eqs.
(37) and (39) is depicted in Fig. 1, where the horizontal

axis denotes the dimensionless superheat. The exper-
imental data obtained by Nishio et al. [5] and Tokita
and Djati [6] are illustrated by symbols. Note that

Tokita and Djati's data are with respect to the heating
surface of 1 mm height, where the smallest heat trans-
fer characteristics was realized. In the experiment by
Nishio et al., a polished aluminium surface whose total

emissivity was assumed to be about 0.025 was utilized
and so the contribution of radiation to the heat trans-
fer coe�cient may be su�ciently disregarded. On the

other hand, Tokita and Djati used a brass heating sur-
face whose total emissivity was 0.7 and thus radiation
corrections to the obtained heat transfer data were

necessary. The convective heat ¯ux was determined by
subtracting the radiative heat ¯ux from the total heat
¯ux and, using thus obtained convective heat ¯ux, the
Nusselt number was computed. The radiation heat ¯ux

qR was evaluated from

qR � s
ÿ
T 4

W ÿ T 4
S

�
=�1=e� 1=aÿ 1� �40�

where e is the total emissivity of a heating surface and
a is the total absorptivity of water surface which was

assumed to be unity. The present results indicate that,

contrary to the previous theoretical results, C0 is an
increasing function of SP. However, an increase rate of

C0 against SP is weak, therefore, the theoretical result
obtained by Nishio et al., i.e., C0 � 1:02, is fairly
reasonable. Detailed inspection of Fig. 1 reveals that

our correlation approximates 91% of the available ex-
perimental data with an accuracy of less than 215%
and is more accurate than that derived by Nishio et

al., which reproduces 86% of the plotted data with the
same accuracy bounds.

4. Conclusions

The major conclusions that can be drawn from the

present study are summarized as follows:

1. The dimensionless temperature pro®le needed for
the analysis by boundary-layer integral methods

should be determined so as to simultaneously satisfy
the energy balance at the liquid±vapor interface and
the energy equation.

2. C0 de®ned by Nu=X 0:2 is an increasing function of

the dimensionless superheat.
3. The heat transfer correlation given by Eqs. (37) and

(39) reproduces the available experimental data with

an acceptable accuracy.
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